

ТЕХНОЛОГИЯ РЕМОНТА КОЛЕСНОЙ ПАРЫ ТЕПЛОВОЗА ЧМЭЗ

Содержание

Введение: цели и задачи письменной экзаменационной работы	3
1.1 Краткая характеристика колесных пар тепловоза ЧМЭ3	5
1.2 Ремонт колесных пар тепловоза ЧМЭ3	10
1.3 Технологическая карта на ремонт колесных пар тепловоза ЧМЭ3	14
1.4 Техника безопасности при ремонте колесных пар	19
Заключение	22
Литература	23

					ВСТАВЬ СВОЙ ШИФР				
Изм.	Лист	№ докум.	Подпись	Дата					
Разр	аб.	Иванов			Технология ремонта	Лит		Лист	Листов
Пров	ер.	Иванов			колесных пар тепловоза			2	23
Реце	нз.	Иванов			ЧМЭ3	ПК-1 гр. №1			
Н. Кс	нтр.	Иванов						<i>№1</i>	
Утве	₽р∂.	Иванов							

Введение

Введение. Общие сведения о тепловозах ЧМЭЗ

Тепловозы ЧМЭ2 и ЧМЭ3 (Ч — чехословацкий, М — маневровый, Э — с электрической передачей, цифры 2 и 3 — номер серии) поставляло в Советский Союз производственное объединение ЧКД-Прага (ЧССР), в которое входят заводы: имени Вильгельма Пика (производство дизелей), «Тракце» (электрооборудование) и «Локомотивка-Соколово» (экипажная часть, вспомогательное оборудование и сборка).

В 1958—1965 гг. чехословацкое национальное предприятие ЧКД-Прага изготовило для железных дорог СССР 522 четырехосных тепловоза ЧМЭ2 мощностью 550 кВт (750 л.с). В 1963 г. производственным объединением ЧКД-Прага по заказу Министерства путей сообщения Советского Союза были изготовлены два опытных шестиосных тепловоза ЧМЭЗ мощностью 993 кВт (1350 л. с), которые прошли эксплуатационные испытания на экспериментальном кольце Всесоюзного научно-исследовательского института железнодорожного транспорта (ст. Щербинка) и в локомотивном депо Люблино Московской дороги.

В 1964 г. была изготовлена опытная партия из десяти тепловозов ЧМЭЗ.

С 1965 г. выпуск тепловозов ЧМЭ2 был прекращен, и начался серийный выпуск тепловозов ЧМЭ3. На 1 января 1990 г. на советские железные дороги поступило более шести тысяч таких локомотивов.

В течение более 20 лет тепловозы ЧМЭЗ поставлялись на дороги Советского Союза без принципиальных конструктивных изменений. В то же время по рекомендациям эксплуатационников и ремонтников депо заводомизготовителем была улучшена конструкция и компоновка отдельных узлов и сборочных единиц.

Длительная эксплуатация тепловозов ЧМЭЗ в различных климатиче-

Изм.	Лист	№ докум.	Подпись	Дата

ских условиях (от минус 40 до плюс 40 °C) показала их высокую надежность. В 1984 г. по заказу МПС ПО ЧКД-Прага были изготовлены два опытных тепловоза ЧМЭЗТ, а в 1986 г.— опытная партия (20 шт.) локомотивов этой модификации. Почти все оборудование (основные сборочные единицы) этого тепловоза (экипажная часть, дизель, компрессор, гидромеханический редуктор, тяговые электрические машины, двухмашинный агрегат и т. д.) одинаково с таким же оборудованием серийного тепловоза ЧМЭЗ, но индекс Т указывает, что тепловоз дополнительно оснащен электродинамическим (реостатным) тормозом и устройством для подогрева дизеля после длительных стоянок. Оба этих новшества, а также применение электронного регулятора позволяют при эксплуатации тепловозов ЧМЭЗТ снизить по сравнению с тепловозами ЧМЭЗ расход топлива на 8—10%, песка на 45—50% и тормозных колодок на 95%.

С июля 1988 г. ПО ЧКД-Прага полностью перешло на серийный выпуск тепловозов ЧМЭЗТ и ЧМЭЗЭ, прекратив выпуск тепловозов ЧМЭЗ. Тепловозы с индексом Э («Электроника») не оборудованы электродинамическим тормозом, но имеют устройство для подогрева дизеля. На этих тепловозах также применен электронный регулятор, позволяющий наиболее эффективно использовать электрическую передачу мощности.

Цели и задачи письменной экзаменационной работы

Заданием на письменную экзаменационную работу было предложено описать назначение и конструкцию колесных пар тепловоза ЧМЭ3, процесс их ремонта, изучить безопасные приёмы труда, меры по экономичному расходованию материалов при ремонте.

Изм.	Лист	№ докум.	Подпись	Дата

1. Краткая характеристика колесных пар тепловоза ЧМЭ3

Для передачи веса тепловоза на путь, создания тяговых и тормозных усилий и направления движения тепловоза по рельсам предназначены колесные пары (рис. 1), состоящие из оси, двух колесных центров, двух бандажей, двух стопорных колец и большого зубчатого колеса.

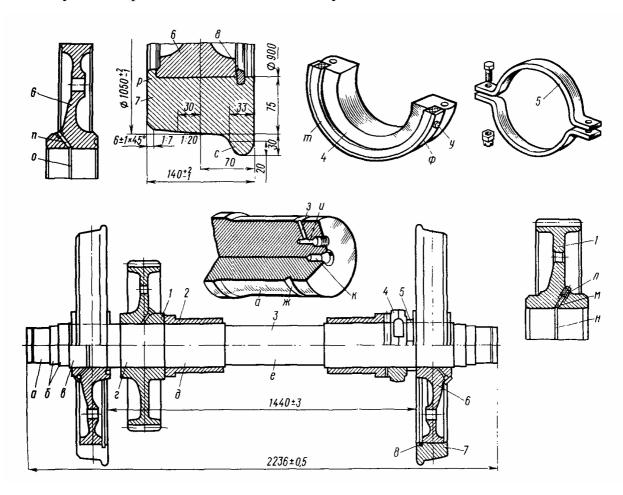


Рисунок 1 - Колесная пара:

1 - большое зубчатое колесо; 2 - вкладыши моторно-осевых подшипников; 3 - ось; 4 — пылевая шайба; 5 - хомут; 6 — колесный центр; 7 - бандаж; 8 - стопорное кольцо; а, д - шейки оси; б — предподступичная часть оси; в, г - подступичные части оси; е - средняя часть оси; ж, н, о - кольцевые канавки; з - радиальное отверстие; и — осевое сверление; к — центровое отверстие; я — пробка; м, п - наклонные отверстия; р - борт бандажа; с- гребень бандажа; т - войлочное кольцо; у - болт; ф - стальная лента

Изм.	Лист	№ докум.	Подпись	Дата

Ось 3, откованная из осевой стали, подвергнутая нормализации и механически обработанная, имеет цилиндрическую форму с различными диаметрами по длине в зависимости от назначения ее частей. Крайние части а диаметром 170 мм являются шейками под роликовые буксовые подшипники. Подступичные части в диаметром 205 мм предназначены для напрессовки колесных центров. Ступенчатый переход от шеек а к подступичным частям «осуществляется с помощью предподступичных частей б диаметрами 174 и 188 мм.

Подступичная часть г диаметром 210 мм используется для напрессовки большого зубчатого колеса. Такой же диаметр имеют две шейки д под моторно-осевые подшипники. Между шейками д заключена средняя часть оси е диаметром 196 мм. Все переходы от одного диаметра к другому (галтели) плавные с радиусом закругления не менее 20 мм, что позволяет избежать концентрации напряжений и появления усталостных трещин. Цилиндрические поверхности оси (кроме средней части) накатаны роликами и отшлифованы.

Конструкция оси предусматривает возможность демонтажа роликовых подшипников при полной ревизии букс. Для этого по торцам оси сделаны осевые сверления и диаметром 5 мм, соединенные радиальными отверстиями з диаметром 3 мм с кольцевыми канавками ж шириной 4 мм, проточенными на наружной поверхности буксовых шеек а. На конце осевого сверления и сделана расточка и нарезана резьба МІбХ1,5 под штуцер гидравлического пресса, которым нагнетают масло в канавку ж. При давлении 300 МПа (3000 кгс/см2) масло упруго деформирует шейку оси и внутреннее кольцо роликового буксового подшипника, просачивается между сопряженными поверхностями, что позволяет легко снять подшипник. По торцам оси в процессе механической обработки сверлят центровые отверстия ас диаметром 12 мм и глубиной 32,5 мм с последующей раззенковкой.

Большое зубчатое колесо 1 изготовлено из легированной стали и напрессовано на ось в холодном состоянии усилием 600 — 800 кH (60 — 80 тс).

Изм.	Лист	№ докум.	Подпись	Дата

Для облегчения процесса напрессовки отверстие диаметром 210 мм в ступице зубчатого колеса с двух сторон расточено под конус 1:20 на глубину 10 мм. Зубчатое колесо имеет 76 прямых зубьев, наружная поверхность которых закалена токами высокой частоты на глубину 2 — 5 мм с последующим низким отпуском (нагрев до температуры 170 — 180 °C и охлаждение на воздухе).

Для съема зубчатого колеса с помощью гидропресса в его ступице сделаны наклонное отверстие м диаметром 5 мм и кольцевая канавка н шириной 3 мм. В эксплуатации отверстие м закрыто пробкой л с резьбой М16х1,5.

Колесные центры 6 дискового типа отлиты из углеродистой стали и напрессованы на ось в холодном состоянии усилием до 1500 кН (150 тс) с натягом 0,3—0,4 мм. При этом колесные центры должны находиться на одинаковом расстоянии от середины оси. Отверстие в ступице колесного центра диаметром 205 мм с обеих сторон расточено под конус 1:10, что предотвращает задир сопрягаемых поверхностей. С этой же целью внутреннюю поверхность ступицы и наружную поверхность оси перед напрессовкой смазывают растительным маслом. Для спрессовки колесного центра с оси в его ступице также сделаны наклонное отверстие п и кольцевая канавка о.

Наружная часть колесного центра (обод) диаметром 900 мм соединена со ступицей диском, в котором имеются два отверстия диаметром 45 мм, используемые для транспортировки колесной пары и крепления ее при обточке на токарном станке.

Бандажи 7 изготавливают из раскисленной мартеновской стали, обладающей достаточной твердостью и одновременно вязкостью. Перед механической обработкой их подвергают закалке с последующим отпуском. Бандаж представляет собой сменное кольцо. На наружной поверхности бандажа, обработанной по специальному профилю, имеется гребень с, который направляет движение колеса по рельсу.

Изм.	Лист	№ докум.	Подпись	Дата